
Technical Survey

On Representations of Cyclic Groups

over the Ring of Gaussian Integers

by

Kenshi KIDA∗ 1

(received on November 21, 2011 accepted on December 12, 2011)

Abstract

The purpose of this paper to determine and classify the indecomposable RG-lattices,

where R is the ring of Gaussian integers, and G is a cyclic group of prime order.

Keywords : Representation, Cyclic Group, Gaussian Integer, Lattice, Ext

1. Introduction

Let G be a finite group, and R a ring of integers. By RG, we denote the group ring consisting of all formal combinations
of the elements of G with coefficients in R. We shall be concerned here with representations of G by matrices with entries in
R, or equivalently, with left RG−modules having a free finite R−basis. However, it is useful to work with a slightly larger class
of modules, namely RG−lattices (that is left RG−modules which are finitely generated and projective as R−modules).

The fundamental problem in integral representation theory is to determine and classify the RG−lattices. Every RG−lattice
is expressible as a direct sum of indecomposable lattices, though not a unique manner. If there are only finitely many isomorphism
classes of indecomposable RG−lattices, we say that RG has finite representation type.

In particular, in the case where G is a cyclic group of prime order p, the following results are known:Diederichsen [1],
Heller-Reiner [2], Kida [3],[4], and Reiner [5].

In this paper, in the case where R is the ring of Gaussian integers, we shall determine all RG−indecomposable lattices up

to isomorphism. The method of the proof is based on the treatment given by Heller-Reiner [2]. Besides we shall show that

calculations of Ext modules play an important role in this discussion.

2. Representation of cyclic group of order p

Throughout this section, let G be a cyclic group generated by an element σ of prime order p.
We set

R = A = Z[i], B = R[ζp] = Z[ζ4p],

where ζs is a primitive s-th root of 1 over Q, and p is odd prime. We have ring isomorphisms

(2.1)
RG

(σ − 1)RG
∼= R = A,

(2.2)
RG

(Φp(σ))RG
∼= B,

given by σ �−→ 1, and σ �−→ ζp, respectively, where Φp(x) is the cyclotomic polynomial of order p (and degree p− 1). By (2.1)
and (2.2), we may view both A and B as left RG-modules.

Let M be arbitrary RG-lattice, and put

N = {m ∈ M ; (σ − 1)m = 0}.

Then N is an RG-submodule of M annihilated by (σ − 1). Thus we may consider that N is R-tortion-free.
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Because R is a principal ideal domain, we obtain

N ∼=

t� �� �
R⊕R⊕ · · · ⊕R .

We may view N both as R-module and RG-module.
Furthermore M/N is annihilated by Φp(σ), so that it may be viewed as B-module. Also M/N is B-torsion-free. Conse-

quently there exist ideals I1, I2, · · · , Iu of B such that

M/N ∼= I1 ⊕ I2 ⊕ · · · ⊕ Iu.

From the preceding discussion, we obtain that M/N is considered both as B-module and RG-module. By the following exact
sequence

0 −→ N −→ M −→ M/N −→ 0,

the problem of classifying the RG-lattices is reduced to that of determining extensions of I1 ⊕ I2 ⊕ · · · ⊕ Iu by

t� �� �
R⊕R⊕ · · · ⊕R.

For the rest of this section, we write Ext instead of Ext1RG. Since RG is a commutative ring, we may view Ext itself as
RG-module.

Suppose that integral ideals B1, · · · , Bh are representatives of the h distinct ideal classes of Q(ζ4p).
The following discussion is similar to that of [3]. By (2.2), the following sequence

0 −→ Φp(σ) ·RG −→ι RG −→ B −→ 0

is exact. Then for every Bj , there exists an ideal Sj of RG such that the sequence

(2.3) 0 −→ Φp(σ) ·RG −→ι Sj −→ Bj −→ 0

is exact. From (2.3), we get the following long exact sequence
0 −→ HomRG(Bj , A) −→ HomRG(Sj , A) −→ι

∗

HomRG(Φp(σ) ·RG,A) −→ Ext(Bj , A) −→ Ext(Sj , A) −→ · · · .
The mapping ι∗ is induced from ι as follows: for any f ∈ HomRG(Sj , A), we have

(ι∗f)x = f(ιx), x ∈ Φp(σ) ·RG.

Since Sj is RG−projective, we obtain Ext(Sj , A) = 0.
For this reason, we get

(2.4) Ext(Bj , A) ∼= HomRG(Y,A)/ι∗HomRG(Sj , A),

where Y = Φp(σ) ·RG.
Now set y = Φp(σ) ∈ Y , then each F ∈ HomRG(Y,A) is explicitly determined by the value F (y) ∈ A, and each a ∈ A is of

the form F (y) for some such F . Thereby
HomRG(Y,A) ∼= A

as RG−modules. Let us determine which elements in A correspond to elements in the image of ι∗. Since ι is the inclusion
mapping, the image of ι∗ in A is exactly Φp(σ)A, and by using (2.4) we have

Ext(Bj , A) ∼= A/Φp(σ)A.

Because
Φp(σ)a = (σp−1 + · · ·+ σ + 1)a = pa, a ∈ A,

we get

(2.5) Ext(Bj , A) ∼= A/pA.

Further we suppose

N =

t� �� �
A⊕A⊕ · · · ⊕ A

and
M/N = Bk1 ⊕Bk2 ⊕ · · · ⊕Bku ,

where 1 ≤ k1, k2, · · · ku ≤ h. Since
Ext(Bj , R) ∼= R/pR =: R

by (2.5), it is easily shown that Ext(M/N,N) is isomorphic to the module of the u× t matrices with entries in R. In order to

calculate the effect of basis changes, it will be convenient to exhibit this isomorphism explicitly. Let

u∑
i=1

Ski ·xi be a free module

with basis x1, x2, · · · , xu. Adding u−copies of the exact sequences (2.3), we obtain the exact sequence

0 −→
∑

Φp(σ) ·RG · xi −→τ
∑

Ski · xi −→
∑

Bki · xi −→ 0
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where xi annihilated by Φp(σ). Set yi = Φp(σ) · xi. Then as above we obtain

Ext(M/N,N) ∼= HomRG(
∑

RG · yi, N)/Imτ∗.

Let N = Aa1 ⊕Aa2 ⊕ · · · ⊕Aat. Then each

F ∈ HomRG(
∑

RG · yi, N),

we may write

F (yi) =

t∑
j=1

αijaj , αij ∈ Aj , 1 ≤ i ≤ u.

The class [F ] which F determines in Ext(M/N,N) then corresponds to the u× t matrix F = (αij) with entries in R.
Suppose that we make a basis change in M/N by leaving x1, x3, · · · , xu unchanged, but replacing x2 by x2 − λx1 for some

λ in RG. Then y1, y3, · · · yu are changed, but y2 becomes y2 − λy1, and α2j is replaced by α2j − λα1j , 1 ≤ j ≤ t.

On theother hand, if a
′
1 = a1+λa2, a

′
2 = a2, · · · , a

′
t = at is a basis change in N , then αi2 is replaced by αi2−λαi1, 1 ≤ i ≤ u.

Note that p is unramified in R. Let
pR = P1P2 · · ·Pg

be the factorization of pR into distinct prime ideals of R. So we have

R/pR ∼= R/P1 ⊕R/P2 ⊕ · · · ⊕R/Pg

∼=

g� �� �
F ⊕ F ⊕ · · · ⊕ F ,

where F is the finite field of characteristic p. By (2.5) and (2.6), we get that Ext(Bj , A) is isomorphic to the direct sum of
g−copies of the finite fields.

In addition, by the following pullback diagram,

RG −→ R
↓ ↓
B −→ R/pR

we define the group homomorphism
φj : u(A)× u(Bj) −→ u(R/pR).

Moreover, the group homomorphism π
(k)
s1s2···sk from

g� �� �
F ∗ ⊕ F ∗ ⊕ · · · ⊕ F ∗ ∼= u(R/pR)

to
k� �� �

F ∗ ⊕ · · · ⊕ F ∗ (F ∗ = F − {0})
is defined by

π
(k)
s1s2···sk (u1, u2, · · ·ug) = (us1 , · · · , usk ) 1 ≤ s1 < · · · < sk ≤ g

for every k = 1, 2, · · · , g, and set

lj =

g∑
k=1

∑
1≤s1<···<sk≤g

����
Imπ

(k)
s1···sk

Imπ
(k)
s1···sk ◦ φj

����
Let Cp be a cyclic group of prime order p. Now we are ready to prove the following result.

Theorem.

Z[i]Cp has finite representation type.

Proof . Let M be an indecomposable RG−lattice. By the discussion at the beginning of this section, we know that M must be

an extension of Bk1 ⊕ Bk2 ⊕ · · · ⊕ Bku by

t� �� �
A⊕A⊕ · · · ⊕ A for some t and u. If t = 0, then we must have M ∼= Bj for some j.

While if u = 0, then M ∼= Ai for some i. Therefore, for the rest of the proof, we assume that both t and u are positive. Let
F = (αij) be the u× t matrix with entries in R corresponding to the extension M of M/N by N . If every entry of F is zero, then
the extension splits, and M is decomposable. Thus, assume that F has a non-zero entry, and in fact, after re-numbering basis
elements, that α11 ̸= 0. However, there exist elements λ2, · · · , λu of RG such that αi1 − λiα11 = 0, 2 ≤ i ≤ u. Consequently
by a basis change in M/N , we may make all of the elements in the first column of F bellow α11 equal to zero. Simularly, a
basis change in N permits us to the (1, 2), · · · , (1, t) entries of F equal to zero. Hence the submodule Aa1 ⊕R Bk1x1 is a direct
summand of M . Because M is indecomposable, we must obtain that M ∼= Aai ⊕R Bkjxj , that is, M must be an extension of
Bj by A.
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Now we consider the extensions of Bj by A; each extension determines an extension class in Ext(Bj , A), which is represented
by an element α in A = A/pA. If α = 0, we have a split extention, which is clearly decomposable. On the other hand, the
isomorphism classes of extensions of Bj by A are in bijection with the orbits of Ext(Bj , A) under the action of (AutA)×(AutBj).
Because φj is not an epimorphism, in general, there are lj−isomorphism classes of non-splitting extensions of Bj by A. Up to

RG−isomorphism, there are exactly 1 + h+
∑

1≤j≤h

lj−indecomposable RG−lattices,given by

A, Bj , (Bj , A)nj (1 ≤ j ≤ h, 1 ≤ nj ≤ lj)

where (Bj , Ai)nj are isomorphism classes of non-splitting extensions of Bj by A. This completes the proof.
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