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Abstract

The purpose of this paper to determine and classify the indecomposable RG-lattices,

where R is the ring of Gaussian integers, and G is a cyclic group of prime order.
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1. Introduction

Let G be a finite group, and R a ring of integers. By RG, we denote the group ring consisting of all formal combinations
of the elements of G with coefficients in R. We shall be concerned here with representations of G by matrices with entries in
R, or equivalently, with left RG—modules having a free finite R—basis. However, it is useful to work with a slightly larger class
of modules, namely RG—lattices (that is left RG—modules which are finitely generated and projective as R—modules).

The fundamental problem in integral representation theory is to determine and classify the RG—lattices. Every RG—lattice
is expressible as a direct sum of indecomposable lattices, though not a unique manner. If there are only finitely many isomorphism
classes of indecomposable RG—lattices, we say that RG has finite representation type.

In particular, in the case where G is a cyclic group of prime order p, the following results are known:Diederichsen [1],
Heller-Reiner [2], Kida [3],[4], and Reiner [5].

In this paper, in the case where R is the ring of Gaussian integers, we shall determine all RG—indecomposable lattices up
to isomorphism. The method of the proof is based on the treatment given by Heller-Reiner [2]. Besides we shall show that

calculations of Ext modules play an important role in this discussion.

2. Representation of cyclic group of order p

Throughout this section, let G be a cyclic group generated by an element o of prime order p.
We set

R=A=1Z[i], B=R[G]=2Z[C],
where (; is a primitive s-th root of 1 over Q, and p is odd prime. We have ring isomorphisms
RG
2.1 - ~¥R=A
(2.1) (c —1)RG ’
RG
(2.2 % ~p,
) @, (0))RC

given by 0 — 1, and o — (,, respectively, where ®,(z) is the cyclotomic polynomial of order p (and degree p — 1). By (2.1)
and (2.2), we may view both A and B as left RG-modules.
Let M be arbitrary RG-lattice, and put

N ={me M;(c —1)m =0}.

Then N is an RG-submodule of M annihilated by (o — 1). Thus we may consider that N is R-tortion-free.
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Because R is a principal ideal domain, we obtain
t

——t
N=ZROR®---OR.

We may view N both as R-module and RG-module.
Furthermore M/N is annihilated by ®,(o), so that it may be viewed as B-module. Also M /N is B-torsion-free. Conse-
quently there exist ideals I, I, - -, I, of B such that

M/N2L QL& @ L.

From the preceding discussion, we obtain that M /N is considered both as B-module and RG-module. By the following exact
sequence
0—N-—M— M/N—O0,

t

——
the problem of classifying the RG-lattices is reduced to that of determining extensions of I1 @I & --- &I, by RER&--- & R.
For the rest of this section, we write Ext instead of Exths. Since RG is a commutative ring, we may view Ext itself as
RG-module.
Suppose that integral ideals Bi, - - -, By, are representatives of the h distinct ideal classes of Q(Cap).
The following discussion is similar to that of [3]. By (2.2), the following sequence

0 — ®,(0)- RG-—+RG — B —0
is exact. Then for every Bj, there exists an ideal S; of RG such that the sequence
(2.3) 0 — ®,(0) - RG—S; — B; — 0

is exact. From (2.3), we get the following long exact sequence
00— HOmRG(Bj, A) — HOInRG(S]', A) TSI
Hompgea(®y(0) - RG, A) — Ext(Bj, A) — Ext(S;,4) — ---.
The mapping ¢* is induced from ¢ as follows: for any f € Hompga(S;, A), we have

"z = f(ux), x € ®p(0) - RG.

Since S; is RG—projective, we obtain Ext(S;, A) = 0.
For this reason, we get

(2.4) Ext(Bj, A) 2 Homgg (Y, A)/"Hompa(S;, A),

where Y = @, (o) - RG.
Now set y = ®,(0) € Y, then each F € Homgg (Y, A) is explicitly determined by the value F(y) € A, and each a € A is of
the form F'(y) for some such F. Thereby
HOIIch;(Y7 A) ~ A
as RG—modules. Let us determine which elements in A correspond to elements in the image of +*. Since ¢ is the inclusion
mapping, the image of " in A is exactly ®,(0)A, and by using (2.4) we have

Ext(Bj, A) = A/®,(0)A.

Because

Pp(0)a = ("' + -+ 0+ 1)a = pa, a€ A,
we get
(2.5) Ext(Bj, A) = A/pA.

Further we suppose
t

—_—f
N=AdAd - --0A
and
M/N = By, ® By, © -+ @ By,
where 1 < ki, ko, - ky < h. Since o
Ext(Bj, R) 2 R/pR=: R
by (2.5), it is easily shown that Ext(M/N, N) is isomorphic to the module of the u x t matrices with entries in R. In order to

u
calculate the effect of basis changes, it will be convenient to exhibit this isomorphism explicitly. Let ZS'“"' -x; be a free module

i=1
with basis x1,x2, -, z,. Adding u—copies of the exact sequences (2.3), we obtain the exact sequence
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where Z; annihilated by ®,(c). Set y; = ®,(0) - z;. Then as above we obtain
Ext(M/N, N) = Hompa() | RG -y, N)/Imr".

Let N = Aa1 © Aas @ --- P Aa;. Then each
F e HOD’IRG(Z RG - yi,N%

we may write

t
F(yi):Zaijaj, OtijEAj, 1<i<u.
j=1

The class [F] which F determines in Ext(M /N, N) then corresponds to the u x ¢ matrix F = (a;;) with entries in R.
Suppose that we make a basis change in M /N by leaving 771,73, - - -, T, unchanged, but replacing Tz by Tz — A\Z7 for some
Ain RG. Then y1,ys, - - y. are changed, but y2 becomes y2 — Ay1, and as; is replaced by az; — Aaqj, 1 < j <t
On theother hand, if all = a1+ \aa, a; =ag, -, a; = a. is a basis change in N, then «;2 is replaced by a2 —Aau1, 1 < i < w.
Note that p is unramified in R. Let
pR:P1P2'--Pg

be the factorization of pR into distinct prime ideals of R. So we have

R/pR = R/PP®R/P,®---® R/P,
g9

—_——~—
=2 FOF®---DF,

where F' is the finite field of characteristic p. By (2.5) and (2.6), we get that Ext(Bj, A) is isomorphic to the direct sum of
g—copies of the finite fields.
In addition, by the following pullback diagram,

RG —» R

4 1
B — R/pR

we define the group homomorphism
@j s u(A) x u(Bj) — u(R/pR).

: (k)
Moreover, the group homomorphism 7y %,...,, from

g

FPoF & ---®F ~uR/pR)

to

Fre---oF" (F*=F—{0})

is defined by

k
ﬂgl)szmsk(ul,ug,---ug) = (Usy, ", Usy) 1<s1<---<sp<g

BN

k=1 1<s1<---<sp<g

for every k =1,2,---, g, and set
Imm

Imwglf?“sk 0 @;

515

(k) ‘

Let C} be a cyclic group of prime order p. Now we are ready to prove the following result.

Theorem.

Z[i]C, has finite representation type.

Proof. Let M be an indecomposable RG—lattice. By the discussion at the beginning of this section, we know that M must be
t

—_—

an extension of By, ® Bk, ®--- @ By, by AGA® .- P A for some ¢t and u. If t =0, then we must have M = B; for some j.
While if u = 0, then M = A; for some i. Therefore, for the rest of the proof, we assume that both ¢ and u are positive. Let
F = (@;;) be the u x t matrix with entries in R corresponding to the extension M of M/N by N. If every entry of F is zero, then
the extension splits, and M is decomposable. Thus, assume that F has a non-zero entry, and in fact, after re-numbering basis
elements, that a7 # 0. However, there exist elements A2, - -+, A, of RG such that a;; — \jarr = 0, 2 < i < u. Consequently
by a basis change in M/N, we may make all of the elements in the first column of F bellow ai7 equal to zero. Simularly, a
basis change in N permits us to the (1,2),---,(1,¢) entries of F equal to zero. Hence the submodule Aa1 ©r By, 71 is a direct
summand of M. Because M is indecomposable, we must obtain that M = Aa, ®r Bkjfj, that is, M must be an extension of
B]' by A
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Now we consider the extensions of B; by A; each extension determines an extension class in Ext(B;, A), which is represented
by an element @ in A = A/pA. If @ = 0, we have a split extention, which is clearly decomposable. On the other hand, the
isomorphism classes of extensions of B; by A are in bijection with the orbits of Ext(B;, A) under the action of (AutA) x (AutB;).
Because ¢; is not an epimorphism, in general, there are I;—isomorphism classes of non-splitting extensions of B; by A. Up to

RG—isomorphism, there are exactly 1 + h + Z lj—indecomposable RG'—lattices,given by
1<j<h

A, Bj, (Bj, A)n, (1<j<h, 1<n; <)
where (Bj, Ai)n; are isomorphism classes of non-splitting extensions of B; by A. This completes the proof.
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