On Representations of Cyclic Groups over the Ring of Gaussian Integers

by

Kenshi KIDA^{*1}

(received on November 21, 2011 & accepted on December 12, 2011)

Abstract

The purpose of this paper to determine and classify the indecomposable RG-lattices, where R is the ring of Gaussian integers, and G is a cyclic group of prime order.

Keywords : Representation, Cyclic Group, Gaussian Integer, Lattice, Ext

1. Introduction

Let G be a finite group, and R a ring of integers. By RG, we denote the group ring consisting of all formal combinations of the elements of G with coefficients in R. We shall be concerned here with representations of G by matrices with entries in R, or equivalently, with left RG-modules having a free finite R-basis. However, it is useful to work with a slightly larger class of modules, namely RG-lattices (that is left RG-modules which are finitely generated and projective as R-modules).

The fundamental problem in integral representation theory is to determine and classify the RG-lattices. Every RG-lattice is expressible as a direct sum of indecomposable lattices, though not a unique manner. If there are only finitely many isomorphism classes of indecomposable RG-lattices, we say that RG has finite representation type.

In particular, in the case where G is a cyclic group of prime order p, the following results are known:Diederichsen [1], Heller-Reiner [2], Kida [3],[4], and Reiner [5].

In this paper, in the case where R is the ring of Gaussian integers, we shall determine all RG-indecomposable lattices up to isomorphism. The method of the proof is based on the treatment given by Heller-Reiner [2]. Besides we shall show that calculations of Ext modules play an important role in this discussion.

2. Representation of cyclic group of order p

Throughout this section, let G be a cyclic group generated by an element σ of prime order p. We set

$$R = A = \mathbf{Z}[i], \qquad B = R[\zeta_p] = \mathbf{Z}[\zeta_{4p}],$$

where ζ_s is a primitive s-th root of 1 over **Q**, and p is odd prime. We have ring isomorphisms

(2.1)
$$\frac{RG}{(\sigma-1)RG} \cong R = A$$

(2.2)
$$\frac{RG}{(\Phi_p(\sigma))RG} \cong B,$$

given by $\sigma \mapsto 1$, and $\sigma \mapsto \zeta_p$, respectively, where $\Phi_p(x)$ is the cyclotomic polynomial of order p (and degree p-1). By (2.1) and (2.2), we may view both A and B as left RG-modules.

Let M be arbitrary RG-lattice, and put

$$N = \{ m \in M; (\sigma - 1)m = 0 \}.$$

Then N is an RG-submodule of M annihilated by $(\sigma - 1)$. Thus we may consider that N is R-tortion-free.

^{*1}Junior Associate Professor, School of Science, Tokai University

Because R is a principal ideal domain, we obtain

$$N \cong \overbrace{R \oplus R \oplus \cdots \oplus R}^{t}.$$

We may view N both as R-module and RG-module.

Furthermore M/N is annihilated by $\Phi_p(\sigma)$, so that it may be viewed as *B*-module. Also M/N is *B*-torsion-free. Consequently there exist ideals I_1, I_2, \dots, I_u of *B* such that

$$M/N \cong I_1 \oplus I_2 \oplus \cdots \oplus I_u.$$

From the preceding discussion, we obtain that M/N is considered both as B-module and RG-module. By the following exact sequence

$$0 \longrightarrow N \longrightarrow M \longrightarrow M/N \longrightarrow 0,$$

the problem of classifying the RG-lattices is reduced to that of determining extensions of $I_1 \oplus I_2 \oplus \cdots \oplus I_u$ by $R \oplus R \oplus \cdots \oplus R$. For the rest of this section, we write Ext instead of $\operatorname{Ext}_{RG}^1$. Since RG is a commutative ring, we may view Ext itself as RG-module.

Suppose that integral ideals B_1, \dots, B_h are representatives of the h distinct ideal classes of $\mathbf{Q}(\zeta_{4p})$.

The following discussion is similar to that of [3]. By (2.2), the following sequence

$$0 \longrightarrow \Phi_p(\sigma) \cdot RG \stackrel{\iota}{\longrightarrow} RG \longrightarrow B \longrightarrow 0$$

is exact. Then for every B_j , there exists an ideal S_j of RG such that the sequence

$$(2.3) 0 \longrightarrow \Phi_p(\sigma) \cdot RG \xrightarrow{\iota} S_j \longrightarrow B_j \longrightarrow 0$$

is exact. From (2.3), we get the following long exact sequence

 $0 \longrightarrow \operatorname{Hom}_{RG}(B_j, A) \longrightarrow \operatorname{Hom}_{RG}(S_j, A) \xrightarrow{\iota^*}$

 $\operatorname{Hom}_{RG}(\Phi_p(\sigma) \cdot RG, A) \longrightarrow \operatorname{Ext}(B_j, A) \longrightarrow \operatorname{Ext}(S_j, A) \longrightarrow \cdots$. The mapping ι^* is induced from ι as follows: for any $f \in \operatorname{Hom}_{RG}(S_j, A)$, we have

$$(\iota^* f)x = f(\iota x), \qquad x \in \Phi_p(\sigma) \cdot RG.$$

Since S_j is RG-projective, we obtain $Ext(S_j, A) = 0$.

For this reason, we get $F(S_j, A) = 0$

(2.4)

$$\operatorname{Ext}(B_j, A) \cong \operatorname{Hom}_{RG}(Y, A) / \iota^* \operatorname{Hom}_{RG}(S_j, A),$$

where $Y = \Phi_p(\sigma) \cdot RG$.

Now set $y = \Phi_p(\sigma) \in Y$, then each $F \in \text{Hom}_{RG}(Y, A)$ is explicitly determined by the value $F(y) \in A$, and each $a \in A$ is of the form F(y) for some such F. Thereby

$$\operatorname{Hom}_{RG}(Y, A) \cong A$$

as RG-modules. Let us determine which elements in A correspond to elements in the image of ι^* . Since ι is the inclusion mapping, the image of ι^* in A is exactly $\Phi_p(\sigma)A$, and by using (2.4) we have

$$\operatorname{Ext}(B_j, A) \cong A/\Phi_p(\sigma)A.$$

Because

$$\Phi_p(\sigma)a = (\sigma^{p-1} + \dots + \sigma + 1)a = pa, \qquad a \in A$$

 $\operatorname{Ext}(B_j, A) \cong A/pA.$

we get

Further we suppose

$$N = \overbrace{A \oplus A \oplus \dots \oplus A}^{t}$$

and

$$M/N = B_{k_1} \oplus B_{k_2} \oplus \cdots \oplus B_{k_u},$$

where $1 \leq k_1, k_2, \dots k_u \leq h$. Since

$$\operatorname{Ext}(B_j, R) \cong R/pR =: \overline{R}$$

by (2.5), it is easily shown that $\operatorname{Ext}(M/N, N)$ is isomorphic to the module of the $u \times t$ matrices with entries in \overline{R} . In order to calculate the effect of basis changes, it will be convenient to exhibit this isomorphism explicitly. Let $\sum_{i=1}^{u} S_{k_i} \cdot x_i$ be a free module with basis x_1, x_2, \dots, x_u . Adding *u*-copies of the exact sequences (2.3), we obtain the exact sequence

$$0 \longrightarrow \sum \Phi_p(\sigma) \cdot RG \cdot x_i \xrightarrow{\tau} \sum S_{k_i} \cdot x_i \longrightarrow \sum B_{k_i} \cdot \overline{x_i} \longrightarrow 0$$

where $\overline{x_i}$ annihilated by $\Phi_p(\sigma)$. Set $y_i = \Phi_p(\sigma) \cdot x_i$. Then as above we obtain

$$\operatorname{Ext}(M/N, N) \cong \operatorname{Hom}_{RG}(\sum RG \cdot y_i, N) / \operatorname{Im} \tau^*.$$

Let $N = Aa_1 \oplus Aa_2 \oplus \cdots \oplus Aa_t$. Then each

$$F \in \operatorname{Hom}_{RG}(\sum RG \cdot y_i, N),$$

we may write

$$F(y_i) = \sum_{j=1}^t \alpha_{ij} a_j, \qquad \alpha_{ij} \in A_j, \ 1 \le i \le u.$$

The class [F] which F determines in Ext(M/N, N) then corresponds to the $u \times t$ matrix $\mathbf{F} = (\overline{\alpha_{ij}})$ with entries in \overline{R} . Suppose that we make a basis change in M/N by leaving $\overline{x_1}, \overline{x_3}, \cdots, \overline{x_u}$ unchanged, but replacing $\overline{x_2}$ by $\overline{x_2} - \lambda \overline{x_1}$ for some

Suppose that we make a basis change in M/V by leaving x_1, x_3, \cdots, x_n unchanged, but replacing x_2 by $x_2 - \lambda x_1$ for some λ in RG. Then y_1, y_3, \cdots, y_n are changed, but y_2 becomes $y_2 - \lambda y_1$, and α_{2j} is replaced by $\alpha_{2j} - \lambda \alpha_{1j}$, $1 \le j \le t$.

On theother hand, if $a'_1 = a_1 + \lambda a_2, a'_2 = a_2, \dots, a'_t = a_t$ is a basis change in N, then α_{i2} is replaced by $\alpha_{i2} - \lambda \alpha_{i1}, 1 \le i \le u$. Note that p is unramified in R. Let

$$pR = P_1 P_2 \cdots P_g$$

be the factorization of pR into distinct prime ideals of R. So we have

$$R/pR \cong R/P_1 \oplus R/P_2 \oplus \dots \oplus R/P_g$$
$$\cong \overbrace{F \oplus F \oplus \dots \oplus F}^{g},$$

where F is the finite field of characteristic p. By (2.5) and (2.6), we get that $Ext(B_j, A)$ is isomorphic to the direct sum of g-copies of the finite fields.

In addition, by the following pullback diagram,

$$\begin{array}{cccc} RG & \longrightarrow & R \\ \downarrow & & \downarrow \\ B & \longrightarrow & R/pR \end{array}$$

we define the group homomorphism

$$\varphi_j : u(A) \times u(B_j) \longrightarrow u(R/pR).$$

Moreover, the group homomorphism $\pi^{(k)}_{s_1s_2\cdots s_k}$ from

$$\overbrace{F^* \oplus F^* \oplus \dots \oplus F^*}^{g} \cong u(R/pR)$$

to

$$\overbrace{F^* \oplus \cdots \oplus F^*}^{k} \qquad (F^* = F - \{0\})$$

is defined by

$$\Gamma_{s_1 s_2 \cdots s_k}^{(k)}(u_1, u_2, \cdots u_g) = (u_{s_1}, \cdots, u_{s_k}) \qquad 1 \le s_1 < \cdots < s_k \le g$$

for every $k = 1, 2, \dots, g$, and set

$$l_j = \sum_{k=1}^g \sum_{1 \le s_1 < \dots < s_k \le g} \left| \frac{\mathrm{Im} \pi_{s_1 \dots s_k}^{(k)}}{\mathrm{Im} \pi_{s_1 \dots s_k}^{(k)} \circ \varphi_j} \right|$$

Let C_p be a cyclic group of prime order p. Now we are ready to prove the following result.

Theorem.

 $\mathbf{Z}[i]C_p$ has finite representation type.

Proof. Let M be an indecomposable RG-lattice. By the discussion at the beginning of this section, we know that M must be

an extension of $B_{k_1} \oplus B_{k_2} \oplus \cdots \oplus B_{k_u}$ by $\overline{A \oplus A \oplus \cdots \oplus A}$ for some t and u. If t = 0, then we must have $M \cong B_j$ for some j. While if u = 0, then $M \cong A_i$ for some i. Therefore, for the rest of the proof, we assume that both t and u are positive. Let $\mathbf{F} = (\overline{\alpha_{ij}})$ be the $u \times t$ matrix with entries in \overline{R} corresponding to the extension M of M/N by N. If every entry of \mathbf{F} is zero, then the extension splits, and M is decomposable. Thus, assume that \mathbf{F} has a non-zero entry, and in fact, after re-numbering basis elements, that $\overline{\alpha_{11}} \neq \overline{0}$. However, there exist elements $\lambda_2, \cdots, \lambda_u$ of RG such that $\overline{\alpha_{i1}} - \lambda_i \overline{\alpha_{11}} = \overline{0}$, $2 \le i \le u$. Consequently by a basis change in M/N, we may make all of the elements in the first column of \mathbf{F} below $\overline{\alpha_{11}}$ equal to zero. Simularly, a basis change in N permits us to the $(1, 2), \cdots, (1, t)$ entries of \mathbf{F} equal to zero. Hence the submodule $Aa_1 \oplus_R B_{k_1} \overline{x_1}$ is a direct summand of M. Because M is indecomposable, we must obtain that $M \cong Aa_i \oplus_R B_{k_j} \overline{x_j}$, that is, M must be an extension of B_j by A.

Kenshi KIDA

Now we consider the extensions of B_j by A; each extension determines an extension class in $\operatorname{Ext}(B_j, A)$, which is represented by an element $\overline{\alpha}$ in $\overline{A} = A/pA$. If $\overline{\alpha} = \overline{0}$, we have a split extention, which is clearly decomposable. On the other hand, the isomorphism classes of extensions of B_j by A are in bijection with the orbits of $\operatorname{Ext}(B_j, A)$ under the action of $(\operatorname{Aut} A) \times (\operatorname{Aut} B_j)$. Because φ_j is not an epimorphism, in general, there are l_j -isomorphism classes of non-splitting extensions of B_j by A. Up to RG-isomorphism, there are exactly $1 + h + \sum_{1 \le j \le h} l_j$ -indecomposable RG-lattices, given by

 $A, \quad B_j, \quad (B_j, A)_{n_j} \qquad (1 \le j \le h, \quad 1 \le n_j \le l_j)$

where $(B_j, A_i)_{n_j}$ are isomorphism classes of non-splitting extensions of B_j by A. This completes the proof. **References**

 $\label{eq:intermediate} [1] \ {\rm F.E.Diederichisen}. \ \ddot{U}ber \ die \ Ausreduktion \ ganzzahliger \ Gruppendarsteliungen \ bei \ arithmetischer \ \ddot{A}quivalenz.$

Hamb. Abh. **14**(1940),357-412.

[2] A.Heller, I.Reiner. Representations of cyclic groups in rings of integers, I. Ann. of Math. 76(1962), 73-92.

[3] K.Kida. Integral representations of cyclic groups. SUT J. Math. 31(1995), 33-37.

[4] K.Kida. On representations of cyclic groups over a ring of integers. to appear in Comm. Algebra.

- [5] I.Reiner. Integral representations of cyclic groups of prime order. Proc. Am. Math. Soc. 8 (1957), 142-146.
- [6] S.K.Sehgal. Units in commutative integral group rings. Math. J. Okayama. Univ. 14 (1970), 135-138.