Technical Survey

On Representations of Cyclic Groups over the Ring of Gaussian Integers

by
Kenshi KIDA＊${ }^{1}$
（received on November 21， 2011 \＆accepted on December 12，2011）

Abstract

The purpose of this paper to determine and classify the indecomposable $R G$－lattices， where R is the ring of Gaussian integers，and G is a cyclic group of prime order．

Keywords ：Representation，Cyclic Group，Gaussian Integer，Lattice，Ext

1．Introduction

Let G be a finite group，and R a ring of integers．By $R G$ ，we denote the group ring consisting of all formal combinations of the elements of G with coefficients in R ．We shall be concerned here with representations of G by matrices with entries in R ，or equivalently，with left $R G$－modules having a free finite R－basis．However，it is useful to work with a slightly larger class of modules，namely $R G$－lattices（that is left $R G$－modules which are finitely generated and projective as R－modules）．

The fundamental problem in integral representation theory is to determine and classify the $R G$－lattices．Every $R G$－lattice is expressible as a direct sum of indecomposable lattices，though not a unique manner．If there are only finitely many isomorphism classes of indecomposable $R G$－lattices，we say that $R G$ has finite representation type．

In particular，in the case where G is a cyclic group of prime order p ，the following results are known：Diederichsen［1］， Heller－Reiner［2］，Kida［3］，［4］，and Reiner［5］．

In this paper，in the case where R is the ring of Gaussian integers，we shall determine all $R G$－indecomposable lattices up to isomorphism．The method of the proof is based on the treatment given by Heller－Reiner［2］．Besides we shall show that calculations of Ext modules play an important role in this discussion．

2．Representation of cyclic group of order p

Throughout this section，let G be a cyclic group generated by an element σ of prime order p ． We set

$$
R=A=\mathbf{Z}[i], \quad B=R\left[\zeta_{p}\right]=\mathbf{Z}\left[\zeta_{4 p}\right],
$$

where ζ_{s} is a primitive s－th root of 1 over \mathbf{Q} ，and p is odd prime．We have ring isomorphisms

$$
\begin{gather*}
\frac{R G}{(\sigma-1) R G} \cong R=A \tag{2.1}\\
\frac{R G}{\left(\Phi_{p}(\sigma)\right) R G} \cong B \tag{2.2}
\end{gather*}
$$

given by $\sigma \longmapsto 1$ ，and $\sigma \longmapsto \zeta_{p}$ ，respectively，where $\Phi_{p}(x)$ is the cyclotomic polynomial of order p（and degree $p-1$ ）．By（2．1） and（2．2），we may view both A and B as left $R G$－modules．

Let M be arbitrary $R G$－lattice，and put

$$
N=\{m \in M ;(\sigma-1) m=0\}
$$

Then N is an $R G$－submodule of M annihilated by $(\sigma-1)$ ．Thus we may consider that N is R－tortion－free．

[^0]Because R is a principal ideal domain, we obtain

$$
N \cong \overbrace{R \oplus R \oplus \cdots \oplus R}^{t} .
$$

We may view N both as R-module and $R G$-module.
Furthermore M / N is annihilated by $\Phi_{p}(\sigma)$, so that it may be viewed as B-module. Also M / N is B-torsion-free. Consequently there exist ideals $I_{1}, I_{2}, \cdots, I_{u}$ of B such that

$$
M / N \cong I_{1} \oplus I_{2} \oplus \cdots \oplus I_{u} .
$$

From the preceding discussion, we obtain that M / N is considered both as B-module and $R G$-module. By the following exact sequence

$$
0 \longrightarrow N \longrightarrow M \longrightarrow M / N \longrightarrow 0
$$

the problem of classifying the $R G$-lattices is reduced to that of determining extensions of $I_{1} \oplus I_{2} \oplus \cdots \oplus I_{u}$ by $\overbrace{R \oplus R \oplus \cdots \oplus R}^{t}$.
For the rest of this section, we write Ext instead of $\operatorname{Ext}_{R G}^{1}$. Since $R G$ is a commutative ring, we may view Ext itself as $R G$-module.

Suppose that integral ideals B_{1}, \cdots, B_{h} are representatives of the h distinct ideal classes of $\mathbf{Q}\left(\zeta_{4 p}\right)$.
The following discussion is similar to that of [3]. By (2.2), the following sequence

$$
0 \longrightarrow \Phi_{p}(\sigma) \cdot R G \xrightarrow{\iota} R G \longrightarrow B \longrightarrow 0
$$

is exact. Then for every B_{j}, there exists an ideal S_{j} of $R G$ such that the sequence

$$
\begin{equation*}
0 \longrightarrow \Phi_{p}(\sigma) \cdot R G \xrightarrow{\iota} S_{j} \longrightarrow B_{j} \longrightarrow 0 \tag{2.3}
\end{equation*}
$$

is exact. From (2.3), we get the following long exact sequence
$0 \longrightarrow \operatorname{Hom}_{R G}\left(B_{j}, A\right) \longrightarrow \operatorname{Hom}_{R G}\left(S_{j}, A\right) \xrightarrow{\iota^{*}}$
$\operatorname{Hom}_{R G}\left(\Phi_{p}(\sigma) \cdot R G, A\right) \longrightarrow \operatorname{Ext}\left(B_{j}, A\right) \longrightarrow \operatorname{Ext}\left(S_{j}, A\right) \longrightarrow \cdots$.
The mapping ι^{*} is induced from ι as follows: for any $f \in \operatorname{Hom}_{R G}\left(S_{j}, A\right)$, we have

$$
\left(\iota^{*} f\right) x=f(\iota x), \quad x \in \Phi_{p}(\sigma) \cdot R G .
$$

Since S_{j} is $R G$-projective, we obtain $\operatorname{Ext}\left(S_{j}, A\right)=0$.
For this reason, we get

$$
\begin{equation*}
\operatorname{Ext}\left(B_{j}, A\right) \cong \operatorname{Hom}_{R G}(Y, A) / \iota * \operatorname{Hom}_{R G}\left(S_{j}, A\right) \tag{2.4}
\end{equation*}
$$

where $Y=\Phi_{p}(\sigma) \cdot R G$.
Now set $y=\Phi_{p}(\sigma) \in Y$, then each $F \in \operatorname{Hom}_{R G}(Y, A)$ is explicitly determined by the value $F(y) \in A$, and each $a \in A$ is of the form $F(y)$ for some such F. Thereby

$$
\operatorname{Hom}_{R G}(Y, A) \cong A
$$

as $R G$-modules. Let us determine which elements in A correspond to elements in the image of ι^{*}. Since ι is the inclusion mapping, the image of ι^{*} in A is exactly $\Phi_{p}(\sigma) A$, and by using (2.4) we have

$$
\operatorname{Ext}\left(B_{j}, A\right) \cong A / \Phi_{p}(\sigma) A
$$

Because

$$
\Phi_{p}(\sigma) a=\left(\sigma^{p-1}+\cdots+\sigma+1\right) a=p a, \quad a \in A,
$$

we get

$$
\begin{equation*}
\operatorname{Ext}\left(B_{j}, A\right) \cong A / p A \tag{2.5}
\end{equation*}
$$

Further we suppose
and

$$
N=\overbrace{A \oplus A \oplus \cdots \oplus A}^{t}
$$

where $1 \leq k_{1}, k_{2}, \cdots k_{u} \leq h$. Since

$$
M / N=B_{k_{1}} \oplus B_{k_{2}} \oplus \cdots \oplus B_{k_{u}},
$$

$$
\operatorname{Ext}\left(B_{j}, R\right) \cong R / p R=: \bar{R}
$$

by (2.5), it is easily shown that $\operatorname{Ext}(M / N, N)$ is isomorphic to the module of the $u \times t$ matrices with entries in \bar{R}. In order to calculate the effect of basis changes, it will be convenient to exhibit this isomorphism explicitly. Let $\sum_{i=1}^{u} S_{k_{i}} \cdot x_{i}$ be a free module with basis $x_{1}, x_{2}, \cdots, x_{u}$. Adding u-copies of the exact sequences (2.3), we obtain the exact sequence

$$
0 \longrightarrow \sum \Phi_{p}(\sigma) \cdot R G \cdot x_{i} \xrightarrow{\tau} \sum S_{k_{i}} \cdot x_{i} \longrightarrow \sum B_{k_{i}} \cdot \overline{x_{i}} \longrightarrow 0
$$

where $\overline{x_{i}}$ annihilated by $\Phi_{p}(\sigma)$. Set $y_{i}=\Phi_{p}(\sigma) \cdot x_{i}$. Then as above we obtain

$$
\operatorname{Ext}(M / N, N) \cong \operatorname{Hom}_{R G}\left(\sum R G \cdot y_{i}, N\right) / \operatorname{Im} \tau^{*}
$$

Let $N=A a_{1} \oplus A a_{2} \oplus \cdots \oplus A a_{t}$. Then each

$$
F \in \operatorname{Hom}_{R G}\left(\sum R G \cdot y_{i}, N\right)
$$

we may write

$$
F\left(y_{i}\right)=\sum_{j=1}^{t} \alpha_{i j} a_{j}, \quad \alpha_{i j} \in A_{j}, 1 \leq i \leq u
$$

The class $[F]$ which F determines in $\operatorname{Ext}(M / N, N)$ then corresponds to the $u \times t$ matrix $\mathbf{F}=\left(\overline{\alpha_{i j}}\right)$ with entries in \bar{R}.
Suppose that we make a basis change in M / N by leaving $\overline{x_{1}}, \overline{x_{3}}, \cdots, \overline{x_{u}}$ unchanged, but replacing $\overline{x_{2}}$ by $\overline{x_{2}}-\lambda \overline{x_{1}}$ for some λ in $R G$. Then $y_{1}, y_{3}, \cdots y_{u}$ are changed, but y_{2} becomes $y_{2}-\lambda y_{1}$, and $\alpha_{2 j}$ is replaced by $\alpha_{2 j}-\lambda \alpha_{1 j}, 1 \leq j \leq t$.

On theother hand, if $a_{1}^{\prime}=a_{1}+\lambda a_{2}, a_{2}^{\prime}=a_{2}, \cdots, a_{t}^{\prime}=a_{t}$ is a basis change in N, then $\alpha_{i 2}$ is replaced by $\alpha_{i 2}-\lambda \alpha_{i 1}, 1 \leq i \leq u$. Note that p is unramified in R. Let

$$
p R=P_{1} P_{2} \cdots P_{g}
$$

be the factorization of $p R$ into distinct prime ideals of R. So we have

$$
\begin{aligned}
R / p R & \cong R / P_{1} \oplus R / P_{2} \oplus \cdots \oplus R / P_{g} \\
& \cong \overbrace{F \oplus F \oplus \cdots \oplus F},
\end{aligned}
$$

where F is the finite field of characteristic p. By (2.5) and (2.6), we get that $\operatorname{Ext}\left(B_{j}, A\right)$ is isomorphic to the direct sum of g-copies of the finite fields.

In addition, by the following pullback diagram,

$$
\begin{array}{ccc}
R G & \longrightarrow & R \\
\downarrow & & \downarrow \\
B & \longrightarrow & R / p R
\end{array}
$$

we define the group homomorphism

$$
\varphi_{j}: u(A) \times u\left(B_{j}\right) \longrightarrow u(R / p R)
$$

Moreover, the group homomorphism $\pi_{s_{1} s_{2} \cdots s_{k}}^{(k)}$ from

$$
\overbrace{F^{*} \oplus F^{*} \oplus \cdots \oplus F^{*}}^{g} \cong u(R / p R)
$$

to

$$
\overbrace{F^{*} \oplus \cdots \oplus F^{*}}^{k} \quad\left(F^{*}=F-\{0\}\right)
$$

is defined by

$$
\pi_{s_{1} s_{2} \cdots s_{k}}^{(k)}\left(u_{1}, u_{2}, \cdots u_{g}\right)=\left(u_{s_{1}}, \cdots, u_{s_{k}}\right) \quad 1 \leq s_{1}<\cdots<s_{k} \leq g
$$

for every $k=1,2, \cdots, g$, and set

$$
l_{j}=\sum_{k=1}^{g} \sum_{1 \leq s_{1}<\cdots<s_{k} \leq g}\left|\frac{\operatorname{Im} \pi_{s_{1} \cdots s_{k}}^{(k)}}{\operatorname{Im} \pi_{s_{1} \cdots s_{k}}^{(k)} \circ \varphi_{j}}\right|
$$

Let C_{p} be a cyclic group of prime order p. Now we are ready to prove the following result.

Theorem.

$\mathbf{Z}[i] C_{p}$ has finite representation type.
Proof. Let M be an indecomposable $R G$-lattice. By the discussion at the beginning of this section, we know that M must be an extension of $B_{k_{1}} \oplus B_{k_{2}} \oplus \cdots \oplus B_{k_{u}}$ by $\overbrace{A \oplus A \oplus \cdots \oplus A}^{t}$ for some t and u. If $t=0$, then we must have $M \cong B_{j}$ for some j. While if $u=0$, then $M \cong A_{i}$ for some i. Therefore, for the rest of the proof, we assume that both t and u are positive. Let $\mathbf{F}=\left(\overline{\alpha_{i j}}\right)$ be the $u \times t$ matrix with entries in \bar{R} corresponding to the extension M of M / N by N. If every entry of \mathbf{F} is zero, then the extension splits, and M is decomposable. Thus, assume that \mathbf{F} has a non-zero entry, and in fact, after re-numbering basis elements, that $\overline{\alpha_{11}} \neq \overline{0}$. However, there exist elements $\lambda_{2}, \cdots, \lambda_{u}$ of $R G$ such that $\overline{\alpha_{i 1}}-\lambda_{i} \overline{\alpha_{11}}=\overline{0}, 2 \leq i \leq u$. Consequently by a basis change in M / N, we may make all of the elements in the first column of \mathbf{F} bellow $\overline{\alpha_{11}}$ equal to zero. Simularly, a basis change in N permits us to the $(1,2), \cdots,(1, t)$ entries of \mathbf{F} equal to zero. Hence the submodule $A a_{1} \oplus_{R} B_{k_{1}} \overline{x_{1}}$ is a direct summand of M. Because M is indecomposable, we must obtain that $M \cong A a_{i} \oplus_{R} B_{k_{j}} \overline{x_{j}}$, that is, M must be an extension of B_{j} by A.

Now we consider the extensions of B_{j} by A; each extension determines an extension class in $\operatorname{Ext}\left(B_{j}, A\right)$, which is represented by an element $\bar{\alpha}$ in $\bar{A}=A / p A$. If $\bar{\alpha}=\overline{0}$, we have a split extention, which is clearly decomposable. On the other hand, the isomorphism classes of extensions of B_{j} by A are in bijection with the orbits of $\operatorname{Ext}\left(B_{j}, A\right)$ under the action of $(\operatorname{Aut} A) \times\left(\right.$ Aut $\left.B_{j}\right)$. Because φ_{j} is not an epimorphism, in general, there are l_{j}-isomorphism classes of non-splitting extensions of B_{j} by A. Up to $R G$-isomorphism, there are exactly $1+h+\sum_{1 \leq j \leq h} l_{j}$-indecomposable $R G$-lattices,given by

$$
A, \quad B_{j}, \quad\left(B_{j}, A\right)_{n_{j}} \quad\left(1 \leq j \leq h, \quad 1 \leq n_{j} \leq l_{j}\right)
$$

where $\left(B_{j}, A_{i}\right)_{n_{j}}$ are isomorphism classes of non-splitting extensions of B_{j} by A. This completes the proof.

References

[1] F.E.Diederichisen. Über die Ausreduktion ganzzahliger Gruppendarsteliungen bei arithmetischer Äquivalenz.
Hamb. Abh. 14(1940),357-412.
[2] A.Heller,I.Reiner. Representations of cyclic groups in rings of integers, I. Ann. of Math. 76(1962), 73-92.
[3] K.Kida. Integral representations of cyclic groups. SUT J. Math. 31(1995), 33-37.
[4] K.Kida. On representations of cyclic groups over a ring of integers. to appear in Comm. Algebra.
[5] I.Reiner. Integral representations of cyclic groups of prime order. Proc. Am. Math. Soc. 8 (1957), 142-146.
[6] S.K.Sehgal. Units in commutative integral group rings. Math. J. Okayama. Univ. 14 (1970), 135-138.

[^0]: ${ }^{* 1}$ Junior Associate Professor，School of Science，Tokai University

