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Abstract

Twitter has grown so rapidly that its users are suffering from an information overload. In order to help people to find
interesting tweets and users from the enormous Twitter space, by applying the document similarity of Gerard Salton and
Christopher Buckley to Twitter streaming data, we attempt to devise a content-based scheme that compares similarities between
Twitter users by matching their tweets against each other, especially in terms of the new key-value type database environment.
Considering that each tweet is a very short message, we performed data processing of individual tweet level and accumulated
tweet level according to author name in our study. At the individual tweet level, finding similar tweets is functional for finding
retweets of tweeted messages, which is helpful for estimating the information propagation in Twitter. Also in the meaning of
security, it is also effective for finding spam tweets and dishonest copies of tweeted messages. At the accumulated tweet level,
finding users who use similar words or expressions is functional for finding users who post similar contents or topics, which is
helpful for finding friends who have similar preferences and interests. As for the concrete procedures of both levels, we first
use Japanese morphological analysis to pick up terms from Twitter data. Then we calculate tfidf to provide a weight parameter
for each term. Finally we calculate the document similarity from weight parameter vector between any two documents, which
shows how much the tweets or the authors are similar to each other. As a confirmation work, we build a computer system to

search tweets by keywords query and to show user similarity between any two users. Distribution graphs of similarity in both

tweet level and author level are also achieved.
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1. Introduction

Twitter is an online social networking service and
microblogging service started from July 2006. Unlike many
other social network services, Twitter not only maintains
social links among users but also broadcasts information to
crowds like the mass media [1]. Furthermore because these
two roles work interactively, users may have massive
chances to access information which they have interest in
as well as interact with the users who posted the
information on Twitter. According to Wikipedia [2], Twitter
has over 500 million registered users as of 2012 and
generating over 340 million tweets every day. Also
according to the report of Semiocast [3], Japan remains the
second most active country in terms of posted tweets: in
June 2012, 10.6% of all public tweets were posted from

Japan, while Japanese users represent 6.7% of all Twitter
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users. However nowadays Twitter users are suffering from
an information overload as it has grown so rapidly. In
order to overcome this problem, a computer system is
introduced to help Twitter users to find what they want. By
means of this computer system, Twitter users can search
the information relevant to given keywords or check if any
tweets similar to the tweets of themselves or find the users
who generally post tweets with similar words or
expressions similar to themselves. When dealing with an
individual tweet, finding similar tweets is functional for
finding retweets of tweeted messages, which is helpful for
estimating the information propagation in Twitter. Also in
the meaning of security, it is also effective for finding spam
When

dealing with tweets accumulated according to author,

tweets and dishonest copies of tweeted messages.

finding users who use similar words or expressions is
functional for finding users who post similar contents or
topics, which is helpful for finding friends who have
similar preferences and interests. From these standpoints
the document similarity of tweets and Twitter users should
be placed as a fundamental theoretical problem, and
implementing the document similarity on a computer
system efficiently is an important problem as well.

Methodology for Twitter data analysis is classified
two types: the relation-based and the

into type
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content-based type. In the field of content-based type,

many previous works focus on ranking and clustering

Twitter users according to the similarity of Twitter contents.

As leading approaches in this filed, two interesting
examples are introduced in the following. S. Petrovic, M.
Osborne and V. Lavrenko reported their work on

“Streaming First Story Detection with application to
Twitter” [4]. Their approach is based on locality sensitive
hashing method adapted to the first story detection task by
The

adaptation eliminates variance in detection results and

introducing a backoff towards exact search.
significantly improves the performance of the system.
Meanwhile C. G. Akcora, M. A. Bayir, M. Demirbas and H.
Ferhatosmanoglu provided their approach on “Identifying
Breakpoints in Public Opinion” [5]. In this paper, based
on two observations on Twitter and the streaming tfidf
algorithm, they proposed efficient methods to identify
break points and classify public opinions in a large stream
of information. They also reported a method to detect the
changes over time and find related events that caused the
opinion changes from Twitter streaming timeline.

In our study as a basic consideration, we think about
the concept of document similarity proposed by Gerard
Buckley [6]

retrieval may be applied to Twitter streaming data. We

Salton and Christopher for information
attempt to devise a content-based scheme that compares
similarities between Twitter users by matching their tweets
against each other, especially in terms of the new key-value
type database environment. The key-value type database
stores data in a collection of (key, value) pairs, such that
each possible key appears at most once in the collection. As
Twitter data is dispatched in the style of attribute and its
value pairs, the key-value type database becomes the most
appropriate  database for processing Twitter data.
Considering that each tweet is a very short message, we
performed two levels of data processing in our study. At the
first level, called a tweet level, we intend to deal with
individual tweet data just as it is. At the second level,
called an author level, we intend to process accumulated
tweets data which is divided according to authors. For both
of these levels, we first use Japanese morphological
analysis to pick up terms from Twitter data. Then we
calculate tfidf to give a weight parameter for each term.
Finally we calculate the document similarity from weight
parameter vector between any two documents. As a
confirmation work, we will build a simple search engine to

discover similar tweets for a given query or to calculate

document similarity between any two users of Twitter.
Calculation results of document similarity distribution at
both tweet level and author level are plotted in graphs also.

The remainder of this paper consists of as follows. In
section 2 we will describe basic processing procedure and
tfidf and document

calculation of weight parameter

similarity. In section 3 we will give the details for
implementing the procedure and the calculation of various
parameters. In section 4 we will deal with individual tweet
to build a similar tweets search system and also to find
similar tweets and to figure the distribution of similarity
according to tweet id. In section 5 we will deal with
accumulated tweet data according to author to find similar
authors and also to figure the distribution of similarity
according to author name. Finally in section 6, we will
conclude our works and describe some problems for our

future research.

2. Basic Procedure of Proposed
Scheme and Calculation of Document
Similarity

2.1 Basic procedure of proposed scheme

Regarding the documents in Japanese, the document
similarity is performed by the following procedures.
1. Extract terms from Japanese documents by using

morphological analysis.

2. Calculate the tf (term frequency) parameter for each
term and each document.

3. Calculate the idf (inverse document frequency)
parameter for each term.

4. Multiply the tf parameter and the idf parameter to get
the tfidf (term frequency and inverse document
frequency) weight parameter for each term and each
document.

5. Calculate document similarity between any two
documents using the tfidf weight parameter vector.

2.2 Weight parameter of terms

In order to numeralize each extracted term, we utilize
tfidf as the weight parameter in our study. There are several
kinds of calculation expression for tfidf [6][7][8], the
expression we use here will be described in the following.
At first we will give the definition expression of term
[6][7](8]. tf(kj) is the

frequency tf(k,j) appearance
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frequency of term t;. If we denote the appearance number
of term t, in document D; as n;, we can give term
frequency tf(k,j) as follows,

k) = 5 (1

L

where the term ¢, will become more important in
document D; if the value of tf(k,j) becomes larger. Next
we will give the definition equation of document frequency
df(k) [6][7][8]. df(k) is the appearance frequency of term
t. When term ¢, appeared in document D; at least one
time, we count the appearance number of document
regarding term t; as one time. The total number of
document where term t, appeared is called the appearance
number of document regarding the whole document in data
set and we will denote it as |d|. Also if we denote the total
number of whole document data set as |D|, then we can

give document frequency df(k) as follows,

|dl

df(k) = 1

(2)
whereas the term t; will become less important if the
value of df(k) becomes larger. To make it be proportional
to importance of the terms, we choose the logarithmic
value of inversed df(k) which is called inverse document
frequency idf(k) [6][7][8] and the expression is given as
follows,

DI

idf(k) = logﬁ =logig |

3)

where the logarithm operation is used as a attenuation
factor here. As a result the term ¢, will become more
important if the value of idf(k) becomes larger. At last the
weight parameter tfidf(k,j) of term t, in document D; is
defined by the product of term frequency tf(k,j) and

document frequency df(k), which is given as follows,

wi = tfidf(k,j) = tf(k ) - idf(k) (4)

we will use this parameter as an importance metric for

weighting terms in our study.

2.3 Document similarity

By using these methods for extracting and weighting
terms in documents, we can express a document as a

numerical vector given as follows,

()

where m indicates the dimension of vector space, which is
the total number of terms appeared in the whole data set.
Therefore we can calculate the similarity of two document
vector (51),5]) ) by cosine similarity, whose definition

formula is given as follows [6][7][8].

. D, D, TR witw)
S0 D)) = 5 = ot oo
AL Jzp b o ooy
3. Implementing the Calculation of

Document Similarity to Twitter
Streaming Data
3.1

Details and

Twitter streaming data

of gathering accumulating

In our study, we gathered all the tweets provided by
the sample of Twitter streaming API and accumulated these
data to CouchDB. The details for this step are shown as

follows.

. In order to gather data from Japanese tweet as accurately
as possible, we only pick out the tweets from Twitter
streaming data on the conditions as follows.

(a) The

Japanese. That is the attribute of author.lang=

language of wuser account is assigned as

“Ja.
(b) At least one Japanese character is included in the
attribute of text.
. All gathered data is accumulated to CouchDB. To help
find the data easily, we store all Twitter data according
like

“tweets-streaming-datasetnameNO”, where NO indicates

to the gathered date with a database name

the number of database.

3.2 Details of extracting terms from Japanese

tweet text

Because there is no separation symbol obviously
between words in Japanese, we have to use morphological
analysis to separate passages to words. In our study we
used a Japanese morphological analyzer named MeCab [9]
to separate words from passages and pick out all nouns,
verbs and adjectives as terms. Because the original Mecab
works only on the condition of standard Japanese and there
appear many non-standard transcribe in Twitter, it may not

work properly sometimes for tweet texts. To improve this
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weak point, we gather non-standard words, notations and
expressions from Twitter and register them to users™
dictionary of MeCab so that they can be recognized.
Although many efforts have been done, there still remains
some improper terms in the results, so at last we remove
these terms by using a stop word list. The detail flow chart

for this procedure is shown in Figure 1.

C extract terms )

( for each database in given data set T

}

( for each tweet data in database T

}

author=get author name from tweet data

)

parse tweet text to nodelist

}

( for each node in nodelist T

adjective

yes

if node is not a stop word

yes
v

append node to termlist

}

term_by_author[author]=termlist

)

}
C end )

Fig. 1 Flow chart for extracting terms from Twitter streaming data

set

3.3 Details of calculating tfidf weight parameter

This procedure consists of two steps, the df calculation
step and the tfidf calculation step. In both of these two
steps, the algorithm description is given on the assumption
that the input data term by author is given by a data
structure of {author, terms} pair, where “author” represents
author name, and the “terms” represents an indefinite
length list of terms. The detail flow chart for calculating df
parameter is shown in Figure 2 and the detail flow chart for

calculating tfidf weight parameter is shown in Figure 3.

3.4  Details of calculating document similarity

This procedure consists of two steps, the norm
calculation step and the similarity calculation step. In both

of these two steps, the algorithm description is given on the

( calculate df )
!

( for author, termlist in term_by_author T

)

( for term in termlist T

if term not in author terms

yes
A4

author_terms[term]=1

yes no
v
no
dffterm]+=1 dffterm]=1

‘ > ‘

)

dffterm]=df{term]/len(term_by author) for all term

:
C end )

Fig. 2 Flow chart for calculating df parameter from extracted

terms
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assumption that the input data termtfidf by author is given
by a data structure of {author, termtfidf} pair, where
“author” represents author name, and the “termtfidf”
represents an indefinite length {term, tfidf} pair of terms.
The detail flow chart for calculating norm is shown in
Figure 4 and the detail flow chart for calculating similarity

is shown in Figure 5.

( calculate tfidf )

}

( for author, termlist in term_by_author T

}

( for term in termlist[author] T

yes

‘ tflauthor][term]+=1 ‘ ‘ tflauthor][term]=1 ‘

. )

( for term in tf[author] T

}

tflauthor][term]=tf[author][term]
/len(termlist[author])

}

tfidflauthor][term]=
-tflauthor][term]*log(df[term])

}

C end )

Fig. 3 Flow chart for calculating tfidf parameter from

extracted terms

4. Applying Document Similarity to
Individual Tweet Text

In this section, we will show three confirmation
experiments using the proposed procedure regarding the

tweet level. The first is a simple search engine application

utilizing the document similarity between given query and
any tweet from Twitter streaming data. The second is going
to find all similar tweets in the Twitter streaming timeline.
The third is going to investigate the distribution of
similarity between any two tweets. The summary of data
set and the results of these experiments will be given in the

following subsections.

( calculate norm )
!

( for author, termlist in termtfidf by author T

}

( for term in termlist[author] T

yes no
norm[author]+= norm[author]=

tfidflauthor][term] tfidflauthor][term]

*tfidf[author][term] *tfidf[author][term]

‘ >

}

norm[author]=sqrt(norm[author])

}

ST

Fig. 4 Flow chart for calculating norm of author from term

weight parameter saved according to author name

4.1 Summary of data set “sample”

The summary of data set “sample” is shown as

follows.

Table 1 Summary of data set “sample”

Database name samplel sample2 sample3
Crawling date 13/08/09 | 13/08/11 13/08/16
Size in CouchDB 49.8MB 105.9MB | 224.9MB

Number of documents 10,080 20,054 40,065

Number of authors 9,888 10,938 37,923

Number of terms 14,410 22,540 34,123
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4.2 Search tweets by weighted keywords

The first experiment in tweet level aims to build a
simple search engine application for Twitter. For a query
given in the form of query={keywordl:weightl,
keyword2:weight2,  ..... keywordn:weightn}, this
application calculates the document similarity between
query and each tweet in data set and outputs the results in
descending order of the similarity. A screen shot of the
search results for query={ K 7% :1.0, % %%:0.5, L 1k
£%:0.4} is shown Figure 6.

( calculate similarity )

( for authorl, termlist] in termtfidf _by_author T

)

( for author2, termlist2 in termtfidf by author T

}

simi[author1][author2]=0

)

( for term1 in termlist[authorl] T

}

( for term2 in termlist1[author2] T

iz

yes
simi[authorl ][author2]=simi[author1][author2]
+tfidflauthor1][term1]*tfid{Jauthor2][term2]

L J
i

simi[authorl][author2]=simi[authorl][author2]
/(norm[author1]*norm[author2])

}

!
C end )

Fig. 5 Flow chart for calculating document similarity from

term weight parameter saved according to author name

4.3 Finding similar tweets in Twitter streaming

timeline

The second experiment aims to find the document
similarity between any two tweets. In the above sample
data set there are 70,199 tweets all together. But for the
reason of precision and elapse time of computation, we
only adopted the tweet which has more than 15 terms as an
effective tweet and all the effective tweets are 5810 at this
time. The results are saved into CouchDB, which can be
fetched from other applications. To give an example of our
calculation results, a screen shot of calculation results in
CouchDB is shown in Figure 7. In this figure, the value 1
means that it is judged that the two tweets are completely
similar to each other. In other words it is judged that all the
six tweets in the field of similar tweet are completely

similar to the tweet in the field of tweet_id.

Fig. 6 Screen shot of search results for query={ X
F:1.0, F4%:0.5, X1L4%:0.4}

Field Value

_id 883397895881 6f63dal5e24al3

_rev 1-21fcl504e22a9]1 6d9f8I10dcael8c7b

368209333093277696 1
368218749301559297 1
368217654584029185 1
368216832479465472 1
368217440649371648 1
368226840105611264 1

similar_tweet

tweet id 368224394B38937600

Fig.7 Calculation results of similarity between any two

tweets (details of document in CouchDB)
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4.4 Distribution of document similarity between

any two tweets

The third experiment aims to calculate the document
similarity between any two tweets and to figure the results
in a distribution graph. The result of this experiment is
shown in Figure 8. The x axis indicates the document
similarity between any two tweets in percentage and the
unit level of similarity is 1%. The y axis, which is
graduated in a logarithm scale, indicates the appearance
frequency in percentage, which is normalized by the square
of the number of tweets. This figure shows there are about
98% appearances for the similarity less than 1% and also
shows a steep descent curve as the similarity level
increases until about 96%. But for the similarity level over
96%, it shows a very sharp rise, we think that this
phenomenon is caused by retweet, duplication, quotation of

tweeted messages.

Distribution of similarity between any two tweets

Appearence frequency()

10°}

\\Wﬁf\m\p"/

€ L I
20 40 60
level of similarity(%)

10°®

10

Fig. 8 Distribution of document similarity between any two

tweets

5. Applying Document Similarity to
Accumulated Tweets

In this section, we will show two confirmation
experiments using the proposed procedure regarding author
level. The first is going to find all similar authors from
The

investigate the distribution of similarity between any two

Twitter streaming timeline. second is going to

authors. The summary of the data set and the results of

these experiments will be given in the following

subsections.

5.1 Summary of data set “bigtest”
The summary of data set “bigtest” is shown as
follows.
Table 2 Summary of data set “bigtest”
Database name bigtest
Crawling date 13/03/13
Size in CouchDB 7.8GB
Number of documents 1,167,309
Number of authors 739,321
Number of terms 232,135
5.2  Finding similar authors in Twitter streaming

timeline

The first experiment in author level aims to find the
document similarity between any two Twitter users. In the
above data set “bigtest” there are 1,167,309 tweets all
together and 739,321 distinct authors. For the reason of
precision and elapse time of computation, we only adopted
effective author on the following conditions: at least 5
tweets are accumulated for an author document and the
document has more than 30 terms. As a result there are
9584 effective authors all together. To give an example of
our calculation result, a screen shot of the similarity results
in CouchDB is shown in Figure 9. This figure shows that
all the author names in the field of similar author have
similar contents to the author name in the field of author
with a similarity value shown next to the author‘S name,
whereas we only saved the users who have similarity larger
than 0.5 to CouchDB this time. For all the calculation
results there are 1492 documents which have details data

stored in the format of Figure 9.

5.3 Distribution of document similarity between

any two authors

The second experiment aims to calculate the document
similarity between any two users and to figure the results in
a distribution graph. The result of this experiment is shown
in Figure 10. The x axis indicates the document similarity
between any two authors in percentage and the unit level of
similarity is 1%. The y axis, which is graduated in a
logarithm scale, indicates the appearance frequency in
percentage, which is normalized by the square of the

number of authors. It is observed that the curve in this
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graph is very similar to that of Figure 8, but it shows a

relative gentle descent compared to Figure 8.

| Field | value
id 28c754feTac
revy 1-e15f
author soug

. 9872578578466488
.9B3155947238438

. 9916201 886318725

. 9B606B3250766091

. 9B45584924006002

. 9899464901635072
6BB2520558995482

@ 0.7212993807319606

. 9794159094827477

similar_author

0.73402910645454654

i 0.540225128943962

¥ 0,6011744574530875

0, B323376672037597

4 0.7332381350381404

W% 0. 551 9839567056857
r 0.7934402973753036
3P 0.7745543604383129

©.5111401827967095

0.6440795257439851
0. 7575035553001453

.5685500432279913

» 0.5623846048837808
7207630713388214

. 7362685425618276

0. 6382705931937714
0.7346225109583752

p 0,7379483274998491

follow_sa 0,5631587642063599

Fig. 9 Calculation results of similarity between any two

authors (details of document in CouchDB)

Distribution of similarity between any two users

Appearence frequency(%)

£ L L L
20

40 60
level of similarity(%)

Fig. 10 Distribution of document similarity between any

two authors

6. Conclusions

In this paper, according to the document similarity

method for information retrieval, we proposed a

content-based implementing scheme for finding similar
tweets and similar users in Twitter in terms of a key-value
type the

procedures and calculation details, we produced a computer

database environment. Based on proposed
system to perform confirmation work. In consequence, the
system works according to its specification and the validity
of our proposed implementing scheme is confirmed at the
prototype level. Although the confirmation work is
achieved successfully, there are still many practical issues
we have to deal with. As we use all nouns, verbs and
adjectives as terms, there are too many terms we have to
process in the subsequent procedures. However, many of
extracted terms may not describe the content of the tweet
plausibly, so that processing these redundant terms may
exhaust futile computation time. Accordingly as the future
work we will attempt to develop more efficient algorithm
for extracting terms. Regarding the computation problem,
although it is an approach to introduce more powerful
computer systems or high speed database systems certainly,
adopting parallel computation scheme may provide more
effective solutions because our work needs to process
massive irrelevant document records. As another future
work we will endeavor to develop parallel algorithm for
processing Twitter streaming data.

We expect that our works will be utilized to prevent
spamming, to analyze the information propagation and to
find friends in Twitter. Furthermore, we expect that the
influences of our works may not be limited to Twitter space,
but it will also contribute to the development of social

relations in the substantial world.
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